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Abstract

1.

Tracking habitat use and dietary shifts in migratory species is vital to conservation
and management. Yet, conventional animal tracking often precludes tracking small

juveniles at critical life stages where recruitment bottlenecks often manifest.

. Stable isotope analysis (SIA) in consecutive laminae in eye lenses, a protein-rich

depositional tissue, has emerged as a promising tool in fishes to develop long-term
interpretive records of dietary histories using a single archival tissue. Currently,
studies using fish eye lenses to study SIA in diets have primarily been conducted
in marine environments using §°C and 8°N to identify resource partitioning, on-
togenetic shifts and lifelong trophic histories. To date, no studies have examined
freshwater taxa nor used %S isotopes.

. We placed juvenile (Chinook Salmon) Oncorhynchus tshawytscha in experimen-

tal enclosures in three different freshwater habitats (hatchery, river and seasonal
floodplain), each with isotopically distinct and well-characterized food webs. This
experimental approach allowed us to directly measure diets and quantify tissue
turnover rates in eye lenses as well as the isotopic fractionation among fish tissues
(fin and muscle tissue) in distinct habitat types using stable isotopes §*°C, 5*°N
and §%4S.

. Bulk eye-lens stable isotope measurements were analysed for juvenile salmon

lenses and were found to be consistent with the isotopic values of rearing habitats.
Slight additional isotopic fractionation was only found in 513C. We then success-
fully applied the method to a larger, reproductively mature adult salmon captured

in freshwater and inferred juvenile habitat use.

. SIA in eye lenses using three dietary isotopes (53¢, 8*°N and §°4S) has significant

potential for answering critical questions about migration, diet, foraging ecology
and life history of migratory aquatic animals on Earth. Such information would
have immediate application towards conservation management of diverse species

and habitats at multiple scales.
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1 | INTRODUCTION

Migratory aquatic animals face unparalleled challenges (Runge et al.,
2014). For the vast majority of species, data on ecological and be-
havioural patterns and impacts from humans are lacking (Phillis
etal., 2018; Vitule et al., 2017). To complete complex life cycles, mobile
animals often require specific habitats for relatively brief but essential
periods (Block et al., 2011; Grol et al., 2014). Ineffective conservation
strategies often stem from missing information on species-habitat re-
lationships during critical periods (Sass et al., 2017). New methods are
needed to uncover these dynamics for species conservation.

Stable isotope analysis (SIA) is increasingly routine for studying
animal migrations, provided predictable turnover rates in tissues
and spatial differences in isotopic ratios (Heady & Moore, 2013;
Hobson & Wassenaar, 2018; Philp, 2007; West et al., 2006). Yet,
applying SIA to biominerals, such as otoliths that have the poten-
tial to reconstruct diet chronologies in a single structure, is un-
common (Grgnkjaer et al., 2013; McMahon et al., 2011; Weber
et al., 2002). This is due to otoliths being composed primarily of
calcium carbonate and inorganic forms of carbon, with minimal
protein (<1%-10%), which limit these structures as dietary isotopic
time-series recorders (see exceptions, M. Bell-Tilcock, C. Jeffres,
A.Rypel, M. Wilmes, R. Armstrong, P. Holden, P. Moyle, N. Fangue,
J. Katz, T. Sommer, J. Conrad, & R. Johnson, unpubl. data; Johnson
et al., 2012; Lueders-Dumont et al., 2018; Weber et al., 2002).

SIA in protein-rich eye lenses of fish tracks dietary isotopic val-
ues over a lifespan (Curtis et al., 2020; Kurth et al., 2019; Quaeck-
Davies et al., 2018; Simpson et al., 2019; Tzadik et al., 2017; Vecchio
et al., 2021; Vecchio & Peebles, 2020; Wallace et al., 2014). Fish
eye lenses are small, onion-like spheres composed of layers (lami-
nae), forming continuously over life, and are no longer undergoing
protein synthesis once fully formed (Granneman, 2018; Greiling &
Clark, 2012; Nicol, 1973; Tzadik et al., 2017; Vecchio, 2020; Wallace
et al., 2014; Wride, 2011). Currently, little is known on mechanisms
influencing frequency of individual lens laminae formation; however,
previous work has described dynamics of isotopic turnover of lens tis-
sue (Granneman, 2018). A strong relationship exists within a species
between body size and lens diameter, with laminae forming during
periods of somatic growth (Quaeck-Davies et al., 2018; Granneman,
2018; Kurth et al., 2019; Vecchio & Peebles, 2020; Vecchio
et al., 2021). Variation in 513C and 8N between left and right lens
tissue is negligible, allowing laminae from each eye to be combined
to provide sufficient sample for isotope analyses in smaller organisms
(Wallace et al., 2014; M. Young, V. Larwood, J. Clause, M. Bell-Tilcock,
G. Whitman, R. Johnson, & F. Feyrer, unpubl. data). Previous work
has focused on resource partitioning, ontogenetic shifts and lifelong
trophic histories of fishes and cephalopods in marine systems (Liu
et al., 2020; Meath et al., 2019; Quaeck-Davies et al., 2018; Simpson
et al., 2019; Tzadik et al., 2017; Vecchio & Peebles, 2020; Wallace
etal., 2014; Xu et al., 2019). Importantly, no work has occurred on this
technique for freshwater nor anadromous species despite its poten-
tial to chronicle movement and life history of diverse fishes, many of
which are declining (Moyle & Leidy, 1992; West et al., 2006).

Dietary stable isotopes are divergent among freshwater, wet-
land and marine systems making them ideal to track landscape-scale
and finer-scale habitat use across these gradients. The use of §'°C
is often linked to energy flows in a system where ocean §'°C val-
ues are higher compared to many terrestrial and freshwater inputs
(Chaloner et al., 2002). §*°N is used to quantify trophic position in a
food web because there is 3%0-4%o enrichment with each consumer
(Fry, 2006). Therefore, salmon feeding on freshwater aquatic insects
has different 8*°N than salmon in hatcheries that feed higher trophi-
cally on marine sources of protein in their feed (Hurd et al., 2008).
Within freshwater and estuarine systems, habitats such as tidal wet-
lands and fluvial floodplains that have large pools of organic matter
and long water residence times have exceptionally low 534S values
(Limburg et al., 2015; Schlesinger & Bernhardt, 2013). Isotopic gra-
dients in §'°C, §'°N, 820, 534S and &7Sr/8%Sr are well characterized
across the landscape of habitats used by juvenile Chinook Salmon
(Oncorhynchus tshawytscha) in California's Central Valley (USA) mak-
ing it a model system for advancing the use of eye-lens isotopes in
fish ecology (Barnett-Johnson et al., 2008; Downing et al., 2016;
Eckard et al., 2007; Johnson et al., 2012; Tomkovic et al., 2020).

We conducted, for the first time, field-based diet experiments
where juvenile salmon were reared for known durations in three dis-
tinct food webs (river, floodplain and hatchery) that characterize the
three dominant freshwater rearing habitats for salmon in California's
Central Valley (Moyle & Leidy, 1992). Our goals were to (a) document
the distinctiveness of the isotopic values in each food web studied;
(b) quantify §'3C, 8'°N and 84S values as they are integrated from
diet into fish lenses and (c) examine whether this method holds
promise for generating long-term interpretive records in adult ani-
mals. Advancement of this method for reconstructing smaller-scale
movements and diet reconstructions across multiple aquatic sys-
tems have immediate implications for the study and conservation of

freshwater and migratory species.

2 | MATERIALS AND METHODS
2.1 | Study system

The Mediterranean climate of the Central Valley supports four evo-
lutionarily distinct runs of Chinook Salmon that occupy the water-
shed year round, all of which are in various stages of decline (Moyle
et al., 2011; Yoshiyama et al., 1998). During wet years, remnant
floodplain habitat exists for juvenile salmonids, but mostly within
managed flood basins (i.e. Sutter and Yolo Bypasses, Figure 1). When
floodplains are not available, migrating juvenile Chinook Salmon
are relegated to the main river channel. The Sacramento River
is California's largest river. Its lower 245 km are channelized and
leveed, effectively reducing the amount of natural floodplain avail-
able for Chinook Salmon (Figure 1; Sommer et al., 2001). Yet, the
relative importance of floodplains to the survival and recruitment
dynamics of Chinook Salmon remains an outstanding question in the

conservation and management of the species.
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FIGURE 1 Map of study system, including the Feather River
Hatchery, lotic Sacramento River, and the Yolo Bypass

2.2 | Field experiment and wild fish

We build on the landscape-scale experimental floodplain ecology
research outlined in Jeffres et al. (2020) to include a dietary recon-
struction component using isotopes. Briefly, hatchery-origin juve-
nile Chinook Salmon were released within experimental managed
floodplain fields in 2016 and captured weekly with some retained
to characterize the isotopic baseline for the hatchery (Figure 1;
Table 1). As part of the same experiment, fish were placed in en-
closures in the Sacramento River to characterize growth and food
web isotope signatures. To assess the relationship among tissues

in wild-caught salmon compared to enclosed river fish, juvenile

TABLE 1 Listof tissue samples and lens tissues

Tissue Isotopes

Treatments N Type analysed

Juvenile Chinook Salmonreared 11 Whole 8¢, §'°N
in hatchery (N = 3), enclosures lens and 8%s
in the Sacramento River (N = 1), minus
wild in the Sacramento River the core
(N = 3), on the Yolo Bypass
floodplain (N = 4)

Juvenile Chinook Salmon 45 Stomach 813C, SN
(9-39 days on the Yolo Bypass contents and 5°4s
floodplain)*

Juvenile Chinook Salmon 30 Fin tissue 813C, SN
(9-39 days on the Yolo Bypass and 5%4s
floodplain)*

Juvenile Chinook Salmon 60 Muscle 813C, 5N
(0-39 days on the Yolo Bypass tissue and 5%/
floodplain)*

Juvenile Chinook Salmon (N = 1) 1 Individual  §'%C, 5N
from the Feather River Hatchery Laminae and 5%4s
were reared on the Yolo Bypass
floodplain for 39 days

Adult Chinook Salmon (Yolo 1 Individual  8%C, 8N
Bypass) laminae and 84S

*Data from these fish can be found in Tilcock (2019) and M. Bell-Tilcock,
C. Jeffres, A. Rypel, M. Wilmes, R. Armstrong, P. Holden, P. Moyle, N.
Fangue, J. Katz, T. Sommer, J. Conrad and R. Johnson (unpubl. data).

salmon were captured concurrently in the Sacramento River chan-
nel by the Delta Juvenile Fish Monitoring Program (DJFMP) using
a 15m beach seine, midwater trawl and Kodiak trawl (Table 1;
Mitchell et al., 2019).

2.3 | Lens Technique

Lenses were removed by creating an incision near the top of the eye
and extracting each lens with a pair of forceps. Once the lens cap-
sule was removed, lenses were delaminated using a modification of
techniques described in Wallace et al. (2014) (Supporting informa-
tion). Laminae were dried in pre-weighed 8 mm x 5 mm tin capsules
(Elemental Microanalysis pressed tin capsules) and submitted to the
UC Davis Stable Isotope Facility for combined §'°C, '°N and §%%S
analysis.

2.4 | Landscape-scale variation in isotopes
across habitats

Laminae from both eyes of individual fish were combined for bulk
analyses to meet minimum dry weight requirements for combined
513C, 51°N and §%%S analysis (2 mg). The lens core was omitted to
eliminate maternal marine bias, due to salmon spending approxi-
mately a month feeding from a yolk sac composed of maternal ma-

rine protein during development (Weber et al., 2002). The amount
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of material from individuals in the Sacramento River enclosures was
not sufficient to achieve the minimum dry weight. Therefore, lenses
for these three individuals were combined and homogenized to pro-
duce a single value for this habitat. We tested reliability of lens iso-
topic dietary values to classify individuals into their correct rearing
habitat using a linear discriminant analysis (LDA) utilizing jackknifed
cross validation in the mass package in R version 4.0.2 (Venables
et al., 2002). Lastly, individual laminae from a single juvenile salmon
from the floodplain were analysed for §*3C, 8*°N and 54S to test the
feasibility of reconstructing diets over smaller temporal and spatial

scales of habitat use.

2.5 | 53¢, 5!°N and 5%%s integration into fish tissues

Weekly dietary isotopic values in stomach contents, fin and muscle
tissue were plotted from baseline hatchery values to 39 days on the
floodplain. We then fit a LOESS curve with 95% ClI (denoted in grey)
to these data (M. Bell-Tilcock, C. Jeffres, A. Rypel, M. Wilmes, R.
Armstrong, P. Holden, P. Moyle, N. Fangue, J. Katz, T. Sommer, J.
Conrad, & R. Johnson, unpubl. data; Tilcock, 2019; Table 1). A for-
mal statistical test was not conducted comparing these curves be-
cause we assume these relationships are inherently nonlinear, but
nonetheless aim to describe general isotopic fractionation patterns
as part of this study. Overall, C:N ratios were low within the muscle
tissues (~3), suggesting lipid content is low enough in the muscle to

not warrant correcting for fractionation (Post et al., 2007).

2.6 | Adult Salmon lifetime diet reconstruction

Fisheries managers in California clip the adipose fin of approximately
25%-30% of hatchery salmon (Kormos et al., 2012). In 2014, the car-

cass of one stray adult Chinook Salmon with intact adipose fin was

recovered near our Yolo Bypass floodplain study site (Figure 1). The
fish was transported to UC Davis where it was stored in a freezer
until further processing. Using previously described methodology, in-
dividual laminae were separated and analysed for isotopic variations
through time. Patterns in laminae isotopic variation were compared to

known patterns in isotopic gradients across habitats.

3 | RESULTS

3.1 | Landscape-scale variation in isotopes across
habitats

Eye-lens SIA differed in §'°C values from salmon rearing across
all three rearing habitats (Figure 2a; Table S1). Hatchery fish had
the most enriched 8'3C values, with river-caught fish (-19.27%. to
-18.91%o0) and enclosed river fish (-18.89%o) displaying more inter-
mediate values. Fish reared on the floodplain for 39 days had the
lowest values (-32.39 %o to —30.44%), with 22-day floodplain reared
showing intermediate values between hatchery-origin and 39-day
floodplain samples (-26.62%o to =26.44%o).

Similar differences existed in §°N values across all habitats
(Figure 2b; Table S1). The most enriched values were found at the
hatchery (14.50%0-15.58%o), with enclosed river fish (14.23%o)
having 51°N values similar to the hatchery. River-caught fish had in-
termediate values between the hatchery and floodplain (12.15%0-
13.39%). Unlike 5'3C however, 5*°N values for floodplain fish reared
for 22 days (11.79%0-11.97%o) did not show an intermediate value
and had a value similar to those reared for 39 days (11.20%o).

We found the largest range in isotopic values between habi-
tats using 8°*S (Figure 2c; Table S1). The hatchery-origin fish had
the most enriched values (15.35%0-17.62%0), with enclosed river
fish (13.48%o) or captured in the river (14.09%0-14.41%0) having

more depleted values compared to the hatchery. Similar to §'°C,
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fish reared on the floodplain for 22 days had an intermediate value
(3.12%0-4.09%o) from the hatchery compared to those reared on the
floodplain for 39 days, which were the most depleted in §4S com-
pared to other habitats (-2.56%o to —4.78%.o).

Classification accuracy of individual juvenile salmon to their
known-rearing habitats using SIA in eye lenses and LDA sums were
high overall, ranging from 72% to 91% (Table $3). When §'°C and
534S were combined in the classification model, 91% of individuals
were correctly classified to their rearing habitat (Table S3). The low-
est classification accuracies occurred when only one isotope was
used (72%-82%). Interestingly, the use of all three isotopes together
produced a lower classification accuracy (82%) than any two iso-
topes together (all with 91% accuracy) likely due to §*°N values being
the most similar across habitats compared to §*3C or §%4S.

Fish placed in experimental enclosures already had formed three
laminae while in the hatchery, but by the end of the study had gained
an additional lamina representing growth in their river or floodplain
habitats (Figure 3). The §'3C, 8*°N and §%S values in the last laminae
(#4) of the floodplain fish that reared for 39 days were in equilibrium
with the bulk lens values for the same group (Figure 4). The earlier

laminae (including the core) all had elevated §°C, 8*°N and §%4S sim-
ilar to ocean values likely due to the influence of marine protein from

maternal sources and hatchery feed prior to arrival to the floodplain.

3.2 | 613C, 51°N and 534S values integrated into
multiple fish tissues

SIAin all juvenile salmon tissues (Table 1; Tables S1 and S2) measured
over the duration of the floodplain experiment declined from marine
hatchery values to low floodplain values. Fractionation of 5.04%o
was found in §'°C between mean diet and mean bulk lens and an
additional fractionation of 3.47%o from mean muscle to mean bulk
lens (Figure 5a). We found an expected fractionation of 4.17%o in
5%°N values between eye-lens values and diet but no additional frac-
tionation occurred between bulk lens and other tissues (Figure 5b;
Table S2). At the start of the experiment, 534S was 3.02%o higher

than muscle values. Yet by the termination of the study, bulk lens

534S and all other tissues converged on 84S diet values (Figure 5c;
Table S2).

FIGURE 3 Cross section of juvenile Chinook salmon weekly lens growth on the Yolo Bypass. Time O represents fish from the hatchery
arriving to the floodplain enclosure experiment detailed in Jeffres et al. (2020), then 16, 22, 29 and 36 days on the floodplain
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3.3 | Adult Salmon lifetime diet reconstruction

We provide SIA for individual lamina of an adult salmon as a
proof-of-concept on the relevance and application of this method
to reconstruct fine-scale diet shifts across aquatic gradients that
could be scaled up to population-level assessments. Generally,
trends in isotopic values were consistent for all three isotopes.
Beginning at the lens core, early laminae had §'°C, §'°N and 84S
values similar to ocean values, consistent with inherited mater-
nal marine protein (Figure 6a-c, orange) and similar to the val-
ues seen in the corresponding laminae in juveniles. The laminae
became lower through time, presumably as feeding on aquatic
insects in riverine environments occurred (Figure 6a-c, green).

Lamina eight was the lowest relative to other laminae. All isotope

values steadily increased as the fish entered marine water and
foraged on trophically higher prey. The final laminae values were
similar to the SIA values of the first few laminae in the juveniles
(Figure 6a-c, blue).

4 | DISCUSSION

Understanding how aquatic animals with complex behaviours and
life cycles utilize diverse habitats is fundamental to their con-
servation (Hobson, 2008; Rubenstein & Hobson, 2004; Runge
et al., 2014). The ability to track ontogenetic diet shifts in a sin-
gle tissue provides key information on aquatic food webs, indi-

vidual foraging ecology and contributions of habitats to aquatic
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ecosystem productivity (Curtis et al., 2020; Kurth et al., 2019;
Liu et al., 2020; Meath et al., 2019; Quaeck-Davies et al., 2018;
Simpson et al., 2019; Vecchio & Peebles, 2020; Wallace et al., 2014;
Xu et al., 2019).

The fractionation patterns found between the bulk lens analysis
when compared to other tissues could be due to combining the lami-
nae instead of analysing individual lamina. Even still, the §°C, 5*°N and
534S values in combined laminae reliably identified which individuals
reared on the floodplain, river or hatchery. Although our sample sizes
were relatively small, the isotopic signals were consistent with previ-
ous work showing significant differences in all isotopes across all three
habitat types. These results therefore represent another study sup-
porting the usefulness of eye-lens SIA using bulk lens analysis (Meath
et al., 2019; Vecchio, 2020), as well as demonstrate new applications
for reconstructing trophic life histories of migratory fish.

Future research should further explore frequency of lens layer
formation across a variety of fish species and other aquatic animals.
Fish reared in floodplain habitats grew rapidly and appeared to add
an additional lamina during the 39-day duration of the study com-
pared to fish reared in river or hatchery (Figure 2). While frequency
of lens layer formation remains unknown, lenses in floodplain-reared
fish were in isotopic equilibrium with their muscle tissue by the con-
clusion of the study (39 days). The assimilation rate in these lenses
was similar to Granneman et al. (2018), yet muscle assimilation
rate was faster than previously seen in laboratory studies (Heady
& Moore, 2013). This is likely due to rapid growth rates occurring
on the floodplain for these fish (Jeffres et al., 2020). Nevertheless,
better methods to understand frequency and mechanisms of layer
formulation would be valuable to strengthen our understanding of
the temporal resolution of eye lenses for diet reconstructions in
salmon and other species.

This method opens avenues in aquatic conservation ecology
for more than Pacific salmonids in California. Migratory species
as juvenile fish rear in a variety of habitats throughout their life
history (Grol et al., 2014; Kimirei et al., 2013; Rypel et al., 2012;
Subalusky et al., 2009; Werner & Hall, 1988). Higher-resolution
data with respect to habitat use are needed to advance conserva-
tion and management of declining aquatic taxa. In our study, SIA
in eye lenses provides a potentially valuable tool for quantifying
the role of floodplains, notably their contribution to recruitment
and production of adult populations and the fishery. Additionally,
the isotopic patterns seen in the adult salmon reconstruction were
similar to what has previously been documented in the ocean
(Hertz et al., 2015; Kaeriyama et al., 2004; Satterfield IV & Finney,
2002; Welch & Parsons, 1993). Lens SIA provides an opportunity
to better understand changes in marine food webs as ocean con-
ditions shift with climate change. Documenting ocean and fresh-
water patterns may lead to greater protection and restoration
of habitats, which could, in turn, aid in the recovery of imperiled
salmon populations. The use of lens SIA on a broad scale could yield
substantial increases in the quantity and quality of life-history in-
formation for diverse fish species in addition to critical habitat
needs of taxa (Sass et al., 2017).
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